Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0362720180560120667
Journal of the Korean Dental Association
2018 Volume.56 No. 12 p.667 ~ p.685
Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration
Kim You-Kyoung

An Yin-Zhe
Cha Jae-Kook
Lee Jung-Seok
Jung Ui-Won
Choi Seong-Ho
Abstract
Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP).

Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% -tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed.

Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks (27.12 3.99 versus 21.97 2.27 ) and 8 weeks (25.75 1.82 versus 22.48 1.10 ) (P < 0.05).

Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.
KEYWORD
Biodegradation, Biphasic calcium phosphate, Bone regeneration, Bone substitute, Collagen membrane
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)